Fractional Cascading and Range Trees

ZHENG Yufei
郑羽霏
יופיי ז＇נג

Dec．12， 2016

Fractional Cascading - Warmup

(o) Problem - predecessor/successor search for x among k sorted lists each of length n
(o) Trivial solution - $O(k \log n)$ time Binary search in each list separately Each search can be done in $O(\log n)$ time

L_{1}	6	7	26	5	54
L_{2}	2	21	29		60
L_{3}	9	13	31		45

© Better solution

Time complexity $O(\log (n k)+k)$
Space complexity $O\left(n k^{2}\right)$

L 2

6
0
1
0

| 7 | 9 |
| :--- | :--- | :--- |
| | |
| 1 | 2 |
| 1 | 1 |
| 0 | 1 |

13	21	26
2	2	2
1	1	2
2	1	
2	2	

29
3
2
2

31
3
3
2

45	54	60
3	3	4
3	3	3
3	4	4

Fractional Cascading - Special Case

© Data Structure

$$
\begin{aligned}
& \text { Let } L_{i}^{\prime}=L_{i} \cup F\left(L_{i+1}^{\prime}\right) \\
& F(L) \triangleq \text { every other element of } L
\end{aligned}
$$

Link between identical elements in L_{i}^{\prime} and L_{i+1}^{\prime}
Each element in L_{i} stores pointer to previous/next element in $L_{i}^{\prime}-L_{i}$
Each element in $L_{i}^{\prime}-L_{i}$ stores pointer to previous/next element in L_{i}

Fractional Cascading - Special Case

© Search Algorithm

Search (x) :
Binary search in L_{1}^{\prime}
From $i=1$ to $k-1$

- If amid $L_{i}^{\prime}-L_{i}$, follow pointers to neighbors in L_{1} to solve the query problem in L_{i}.
- If amid L_{i}, follow pointers to neighbors in $L_{i}^{\prime}-L_{i}$ (Else stay)
- Walk down to L_{i+1}^{\prime}

Fractional Cascading - Special Case

- Time Complexity - $O(\log n+k)$ Only 1 binary search in L_{1}^{\prime}
- Space Complexity - O(nk)

$$
\begin{aligned}
\left|L_{i}^{\prime}\right|= & \left|L_{i}\right|+\frac{1}{2}\left|L_{i+1}^{\prime}\right| \\
& =\left|L_{i}\right|+\frac{1}{2}\left(\left|L_{i+1}\right|+\frac{1}{2}\left|L_{i+1}^{\prime}\right|\right) \\
& =\left|L_{i}\right|+\frac{1}{2}\left|L_{i+1}\right|+\frac{1}{2^{2}}\left|L_{i+2}\right|+\cdots+\frac{1}{2^{k-i}}\left|L_{k}\right| \\
& =\left|L_{i}\right| \sum_{j=0}^{k-i} \frac{1}{2^{j}} \leq 2 n \quad \begin{array}{l}
\text { Each element in the list } \\
\text { has constant number of } \\
\text { pointers }
\end{array} \\
& \sum_{i=1}^{k}\left|L_{i}^{\prime}\right|=\sum_{i=1}^{k}\left(\left|L_{i}\right| \sum_{j=0}^{k-i} \frac{1}{2^{j}}\right) \leq 2 k n
\end{aligned}
$$

Fractional Cascading - General Case

© A directed graph where each

- vertex contains a set of sorted elements
- edge labeled with range $[a, b]$
- locally bounded degree:
\# incoming edges whose labels $\ni x$ is less or equal to c

© Search Algorithm -

find x in k vertices' sets by navigating from some vertex, along edges whose labels $\ni x$ Time Complexity - $O(k+\log n)$

Fractional Cascading, Chazelle and Guibas, 1986

Range Trees - Recall

() ID:

- Data Structure: balanced BST on leaves
- Internal node key = maximum of left subtree
- Leaves = points

Query ([abb]): Search(a), Search (b)
Query time: $O(\log n+k)$ k - \# reported points

Range Trees - Recall

() 2D:

- Data Structure:

1D tree on $x+$ each subtree links to 1D tree on y on same points

- Query $\left(\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]\right):$
- x Query $\left(\left[a_{1}, b_{1}\right]\right)$
- Follow pointers
- y Query $\left(\left[a_{2}, b_{2}\right]\right)$

Query time: $O\left(\log ^{2} n+k\right)$
($d \mathrm{D}$: Query time: $O\left(\log ^{d} n+k\right)$

Layered Range Tree
Data Structure: 1D tree on $x+$ sorted arrays on y and store pointers:

- from each x subtree to its corresponding y array
- from y arrays of node v to y arrays of left $(v), \operatorname{right}(v)$

Query $\left(\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]\right)$: x Query $\left(\left[a_{1}, b_{1}\right]\right)$
Search once in root y structure

Carrry search results down to result subtree roots
Query time: $O(\log n+k)$
(o) $\boldsymbol{d D}$:

Data Structure:
same $d \mathrm{D}$ range tree +2 D base case
Query time: $O\left(\log ^{d-1} n+k\right)$

