
Fractional Cascading
and Range Trees

236719 Computational Geometry – Tutorial 3

ZHENG Yufei
郑羽霏

נג'יופיי ז

Dec. 12, 2016

Fractional Cascading – Warmup
◎ Problem – predecessor/successor search

for 𝑥 among 𝑘 sorted lists each of length 𝑛

◎ Trivial solution - 𝑂 𝑘 log 𝑛 time
Binary search in each list separately
Each search can be done in 𝑂 log 𝑛 time

◎ Better solution
○ Time complexity 𝑂(log 𝑛𝑘 + 𝑘)
○ Space complexity 𝑂(𝑛𝑘2)

- Search in the union of all
lists 𝐿

- Each element of 𝐿 holds the
result of the search query
for each of the lists

◎Data Structure
- Let 𝐿𝑖

′ = 𝐿𝑖 ∪ 𝐹(𝐿𝑖+1
′)

𝐹(𝐿) ≜ every other element of 𝐿
- Link between identical elements in 𝐿𝑖

′ and 𝐿𝑖+1
′

- Each element in 𝐿𝑖 stores pointer to previous/next
element in 𝐿𝑖

′ − 𝐿𝑖
- Each element in 𝐿𝑖

′ − 𝐿𝑖 stores pointer to
previous/next element in 𝐿𝑖

Fractional Cascading – Special Case

′

′

′

′

◎ Search Algorithm
Search(𝑥):

- Binary search in 𝐿1
′

- From 𝑖 = 1 to 𝑘 − 1
- If amid 𝐿𝑖

′ − 𝐿𝑖, follow pointers to neighbors in
𝐿1 to solve the query problem in 𝐿𝑖.

- If amid 𝐿𝑖, follow pointers to neighbors in 𝐿𝑖
′ − 𝐿𝑖

(Else stay)
- Walk down to 𝐿𝑖+1

′

Fractional Cascading – Special Case

○ Time Complexity - 𝑂(log 𝑛 + 𝑘) Only 1 binary search in 𝐿1
′

○ Space Complexity - 𝑂(𝑛𝑘)

𝐿𝑖
′ = 𝐿𝑖 +

1

2
𝐿𝑖+1
′

= 𝐿𝑖 +
1

2
𝐿𝑖+1 +

1

2
𝐿𝑖+1
′

= 𝐿𝑖 +
1

2
𝐿𝑖+1 +

1

22
𝐿𝑖+2 +⋯+

1

2𝑘−𝑖
𝐿𝑘

= 𝐿𝑖

𝑗=0

𝑘−𝑖
1

2𝑗
≤ 2𝑛

𝑖=1

𝑘

𝐿𝑖
′ =

𝑖=1

𝑘

𝐿𝑖

𝑗=0

𝑘−𝑖
1

2𝑗
≤ 2𝑘𝑛

Fractional Cascading – Special Case

Each element in the list
has constant number of
pointers

◎ A directed graph where each
○ vertex contains a set of sorted elements
○ edge labeled with range [𝑎, 𝑏]
○ locally bounded degree:

incoming edges whose labels ∋ 𝑥
is less or equal to 𝑐

◎ Search Algorithm –
find 𝑥 in 𝑘 vertices’ sets by navigating from
some vertex, along edges whose labels ∋ 𝑥

○Time Complexity - 𝑂(𝑘 + 𝑙𝑜𝑔𝑛)

Fractional Cascading – General Case

′
′

Fractional Cascading, Chazelle and Guibas, 1986

Range Trees – Recall

◎ 1D:
○ Data Structure: balanced BST on leaves
◉ Internal node key = maximum of left subtree
◉ Leaves = points

○ Query([a,b]): Search(a), Search(b)
○ Query time: 𝑂(log𝑛 + 𝑘)

𝑘 - # reported points

Range Trees – Recall

◎ 2D:
○ Data Structure:
1D tree on 𝑥 + each subtree links to
1D tree on 𝑦 on same points

◉ Query([𝒂𝟏, 𝒃𝟏] × [𝒂𝟐, 𝒃𝟐]):
- 𝑥 Query([𝑎1, 𝑏1])
- Follow pointers
- 𝑦 Query([𝑎2, 𝑏2])
○Query time: 𝑂(log2𝑛 + 𝑘)

◎ 𝒅D: Query time: 𝑂(log𝑑𝑛 + 𝑘)

Layered Range Tree
◎ 2D:
○ Data Structure: 1D tree on 𝑥 + sorted arrays on 𝑦 and store

pointers:
◉ from each 𝑥 subtree to its corresponding 𝑦 array
◉ from 𝑦 arrays of node 𝑣 to 𝑦 arrays of left 𝑣 , right(𝑣)
○Query([𝒂𝟏, 𝒃𝟏] × [𝒂𝟐, 𝒃𝟐]):
- 𝑥 Query([𝑎1, 𝑏1])
- Search once in root 𝑦 structure
- Carrry search results down to result subtree roots
○Query time: 𝑂 log 𝑛 + 𝑘

◎ 𝒅D:
○Data Structure:

same 𝑑D range tree + 2D base case
○Query time: 𝑂(log𝑑−1𝑛 + 𝑘)

Scaling and Related Techniques for Geometry Problems, Gabow, Bentley and Tarjan, 1984

